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1 Robot kinematics

Robotics is an interdisciplinary field involving
mechanical and electrical engineering, computer
science, and applied mathematics, that also draws
inspirations from biology, psychology, and cogni-
tive science. From robots in a factory to inter-
planetary rovers, one of the fundamental capa-
bilities a robot must have is to know where it is
and how to get to where it needs to go. This
includes knowing where its appendages are and
how to move them effectively. While in techni-
cal jargon these appendages may be called ‘ma-
nipulators’ with ‘end-effectors’ that directly in-
teract with workpieces, they are more commonly
referred to as robot ‘arms’ and ‘hands,’ especially
when the robot links are connected end to end in
serial fashion. Locating a hand involves finding
both its position and its orientation. For example,
to pick an object out of an open jar, it is impor-
tant for the hand to not only reach the position
of the object but also to be oriented through the
opening of the jar. Orientation is fully specified
by a 3× 3 orthogonal matrix, sometimes called a
rotation matrix or a direction cosine matrix.

It turns out that the geometric motion charac-
teristics, that is, the kinematics, of most robots
(and most mechanical systems in general) are well
modeled by systems of polynomial equations. In
particular, this can be seen in the most common
element used in mechanism work: the rotational
joint. When a series of links are connected end
to end by rotational joints, each link turns circles
with respect to its neighbors, and circles can be
described by polynomial equations. The polyno-
mial nature of the models allows one to apply al-
gebraic geometry to solving kinematics problems.

Consider a serial-link robot arm with rotational
joints canted at various angles so that the hand
maneuvers in three-dimensional space, not just
in one plane. To be more precise, consider first
just a single joint and let u⃗ ∈ R3 be a unit vec-
tor (u⃗ · u⃗ = 1) along its joint axis, assumed to be
passing through the origin. As illustrated in Fig-
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Figure 1: Rotation of p⃗ around axis u⃗.

ure 1, the rotation of an arbitrary vector p⃗ ∈ R3

through an angle of θ around unit vector u⃗ is

R(u⃗, θ)p⃗ = (u⃗ · p⃗)u⃗+[p⃗−(u⃗ · p⃗)u⃗] cos θ+ u⃗× p⃗ sin θ,

where R(u⃗, θ) is a 3×3 matrix expression formed
from the matrix interpretation of the vectorial op-
erations on the right-hand side.
The trigonometric expression for the rotation

can be converted to an algebraic one by replac-
ing (cos θ, sin θ) by (c, s) subject to the unit-circle
condition c2 + s2 = 1. Abusing notation, we call
the reformulated rotation matrix R(u⃗, c, s), which
in matrix form becomes

R(u⃗, c, s) = u⃗u⃗T + (I − u⃗u⃗T )c+ Λ(u⃗)s,

where

Λ

xy
z

 =

 0 −z y
z 0 −x
−y x 0

 .

For example, if u⃗ =
[
1 0 0

]T
, then R(u⃗, c, s)

is a rotation in the (y, z)-plane. We note that
R(u⃗, c, s) is linear in (c, s). As the joint turns,
the vector u⃗ defining it stays constant while (c, s)
vary, but R(u⃗, c, s) is always orthogonal, and its
determinant is 1.
This generalizes to a multilink arm. Consider

links numbered 0 to N from the robot’s base to
its hand, connected in series by rotational joints.
To formulate the position and orientation of the
hand with respect to the base, we need geometric
information about the links and their joints. As
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Figure 2: Serial-link robot schematic.

illustrated in Figure 2, mark a point P1 on the
joint axis between links 0 and 1, and similarly
mark points P2, . . . , PN on the succeeding axes.
Also, mark a reference point in the hand as PN+1.
Next, freeze the arm in some initial pose, and at
this configuration let u⃗i be a unit vector along
the axis of the joint between link i− 1 and link i.
Finally, in the initial pose, let the vector from Pi

to Pi+1 be p⃗i and let the initial orientation of the
hand be Q0 ∈ SO(3). With these definitions and
the shorthand Ri := R(u⃗i, ci, si), we may write
the orientation, Q =

[
Qx Qy Qz

]
∈ SO(3), of

the hand with respect to the base and the position
vector, q⃗, from P1 to PN as

Q = R1R2 · · ·RN−1RNQ0, (1)

q⃗ = R1(p⃗1 +R2(p⃗2 + · · ·+RN (p⃗N ) · · · )). (2)

Given the joint rotations (ci, si), i = 1, . . . , N ,
one may evaluate these expressions to obtain Q
and q⃗. This solves the forward kinematics prob-
lem for serial-link arms.

2 Inverse kinematics

Evaluation of the forward kinematics formulas
tells where a serial-link robot’s hand is relative
to its base. More challenging is to reverse this by
answering the inverse kinematics problem: what
joint rotations (ci, si), i = 1, . . . , N will cause the
hand to attain a desired location (Q, q⃗)? The
space of all rigid body motions is SE(3), a six
dimensional space parameterizable by three ro-
tations and three translations. Thus, we need
N ≥ 6 joints to place the hand in any arbitrary

position and orientation within the working vol-
ume of the arm.
Let us consider the important case of N = 6,

where we expect to have a finite number of solu-
tions to the equations (1,2) along with

c2i + s2i = 1, i = 1, . . . , 6. (3)

Although (1) has nine entries, only three are in-
dependent since QTQ = I. The isolated solutions
of the system are preserved if one takes three ran-
dom linear combinations of these nine, which with
the rest of the equations makes a system of 12
polynomials in 12 unknowns. By Bézout’s Theo-
rem, the number of isolated solutions of a system
of N polynomials in N unknowns cannot exceed
the total degree, defined as the product of the de-
grees of the equations. For the system at hand,
this comes to 6626 = 2, 985, 984. It turns out that
this upper bound is rather loose.
The root count can be reduced by algebraically

manipulating the equations. First, using the fact
that R−1

i = RT
i , one may rewrite (1,2) as

RT
3 R

T
2 R

T
1 Q = R4R5R6Q0, (4)
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3 (R

T
2 (R

T
1 q⃗ − p⃗1)−p⃗2) =

p⃗3 +R4(p⃗4 +R5(p⃗5 +R6p⃗6))

(5)

These equations are now cubic, reducing the to-
tal degree to 3626 = 46, 656. But the equa-
tions are far from being general cubics, because
the (ci, si) pairs each appear linearly. Grouping
the unknowns into three groups as {c1, s1, c4, s4},
{c2, s2, c5, s5}, and {c3, s3, c6, s6}, equations (4,5)
are recognized as being trilinear. A three-
homogeneous variant of Bézout’s Theorem ap-
plies, bounding the maximum possible number
of isolated roots by the coefficient of α4β4γ4 in
(α+ β + γ)6(2α)2(2β)2(2γ)2, i.e., 5,760.
This is just the beginning of the algebraic ma-

nipulations that one can perform on the way to
showing that the six-revolute (6R) inverse kine-
matic problem has at most 16 isolated roots.
From an early statement of the problem by

Pieper in 1968 to a numerical solution by Tsai
and Morgan in 1985 using continuation to the
first algebraic derivation of an eliminant equation
of degree 16 by Lee and Liang in 1988, this prob-
lem was one of the top conundrums for kinemati-
cians for twenty years. Now, powerful computer
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algorithms can be applied to solve the problem in
minutes with either symbolic computer algebra,
based on variants of Buchberger’s algorithm, or
numerical algebraic geometry, based on continua-
tion methods. In the latter approach, no further
manipulation of the equations is required, as one
can set up a homotopy that continuously deforms
a general three-homogeneous system compatible
with equations (3–5) into a target 6R example.
The endpoints of the 5,760 paths of this homo-
topy, which can be tracked in parallel on multiple
processors, include the 16 isolated solutions (real
and complex) of the example 6R problem. After
solving a general target example in this way, it be-
comes the start system for a 16-path parameter
homotopy to solve any other 6R inverse kinematic
problem.

3 Generalizations

In addition to serial-link arms, robots and mecha-
nisms can have a variety of topologies, composed
of serial chains connected together to form closed-
chain loops. Both forward and inverse kinematics
problems become challenging, but the kinematics
remain algebraic and modern algorithms derived
from algebraic geometry apply. These mathemat-
ical methods for kinematic chains also find appli-
cation in biomechanical models of humans and
animals and in studies of protein folding.
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